EET 399/499, Spring 2010

Eastern Kentucky University
Department of Technology

Syllabus EET 399 – CET Capstone Project, 22331 &
EET 499 – CEN Capstone Project, 22332
3 credit hours
Spring 2010

Instructor: Prof. Vigs Chandra, PhD
Office: 405 Whalin Technology Complex
Telephone: 859-622-1187
E-mail: vigs.chandra@eku.edu
Web: http://people.eku.edu/chandrav

Class schedule: EET 399: Section 001, CRN 22331; TR: 6:00-7:55 p.m., in Room 407/400
EET 499: Section 001, CRN 22332; TR: 6:00-7:55 p.m., in Room 407/400

Office Hours: MTWR: 10-11:30 a.m., and 4:30-6 p.m. If my office door is open at other times
I will most likely be available for discussion. Come right in. You may email me
regarding additional meeting times if needed.

CATALOG COURSE DESCRIPTION:
EET 399: A project and research oriented course which serves as a capstone experience for
Computer Electronics Technology (CET). The design, implementation, analysis, and
troubleshooting of electronic and computer technology related systems, is emphasized.

EET 499: A project and research oriented course which serves as a capstone experience for
Computer Electronic Networking (CEN). The design, implementation, analysis, and
troubleshooting of networking, computers and electronics technology related systems, is
emphasized.

Prerequisite:
EET 399: Instructor approval and Sophomore (30 – 59 hours) or higher standing. Only for
students who are enrolled in the 2-year AS or AAS degree in Computer Electronics.

EET 499: Instructor approval and Senior standing (90 or more hours). Only for students who
are enrolled in the 4-year BS degree Computer Electronic Networking.

TEXTS:
Required: None

References:

STUDENT LEARNING OUTCOMES:

Upon completion of this course, the student will:

1. Define a technical problem in terms of a project for which solutions can be determined.
2. Demonstrate technical skill while solving problems in areas related to computer systems, network and electrical/electronic circuit design.
3. Perform independent research, as well as work effectively in teams.
4. Systematically organize and plan the completion of a project including conducting research, laboratory experimentation, testing and troubleshooting.
5. Demonstrate an in-depth knowledge in areas related to computer systems, networks, control systems, automation, electrical and electronic systems.
6. Test and troubleshoot the operation of electronic, computer, or network systems using proper instruments and procedures.
7. Articulate results of the project in the form of written technical reports, oral presentations and demonstrations.

COURSE OUTLINE:

Each student should select a project from an area of the CET/CEN major *(electricity & electronics*, such as PLC based automation; *computer systems*, such as microcontrollers or hardware configurations or data backups; *networks*, such as security or wireless communications) which is of interest to you. It is possible to select topics which bridge these areas as well. Enhancements in the safety or accessibility of existing equipment or green
technologies using novel electronic or computer networking based systems may be considered. While individual projects are strongly preferred, for considerably larger, multi-disciplinary projects students may form groups of up to two students.

You may seek the guidance of computer electronics faculty members, and use the laboratories in the department to complete your project. The project is meant to be a synthesis experience, where you draw on from several courses in the department while generating a topic for independent research and implementation. It is not structured in the regular lecture-laboratory format, rather more as an independent study one. This is a tremendous opportunity for you to develop an integrated research and laboratory type activity in an area of your interest. We hope it will be the most meaningful class you have taken in expanding your knowledge, based on what you want to research and build as part of this course.

The steps involved in designing, implementing and documenting your capstone project are:

- Identify areas of personal or professional interest in electricity/electronics, computer systems, or networking. Explore ideas for novel electrical/electronic devices, computer systems or network software or hardware designs within these areas that meets some need. The topic is to be approved by the instructor prior to implementation.
- Define the scope of the problem you are trying to solve or the higher level specifications of the system being designed.
- Conduct online research for technical articles related to the capstone project idea, and develop an annotated bibliography.
- Mid-term Group presentation section – once topics, and preferably papers related to different project areas have been identified, students will form groups, and develop a group presentation. The presentation will explain at least one of the articles the group found most interesting to the rest of the class. If feasible a portion of the project that is relevant to multiple group members should to be implemented using the ideas presented in the article.
- Following the mid-term students will be working individually on the design, simulation, development, implementation, troubleshooting, and documentation of their projects.
- Final demonstration, presentations, and online video. Updated material required for the capstone web page.
- Final capstone report and portfolio.

EVALUATION METHODS:

Each student will be evaluated as follows:

- Progress reports – 20%
- Group research presentation – 20%
- Final project demonstration & presentation – 25%
- Final project report – 20%
- Discussion Board entries (online) – 10%
- Portfolio (binder) – 5%

Progress reports:

- 3 written progress reports are to be submitted. These are intended to serve as steps along the way to help you stay on schedule with regards to the final project.
• After each written progress report has been submitted (on designated Tuesdays), please stop by my office the next class period for discussions regarding your progress report.

• 1st Progress Report: Submit a project proposal, with a list of possible topics for your project. For this identify the general area (electricity & electronics, etc.) in which you want to work, and a sub-area within it, such as PLC based automation. If you already have a pretty good idea for the project topic within the sub-areas list it here. Alternatively identify the sub-areas you would like to work in providing as much detail as possible about your interests and experience working that type of technology. Outline the scope of the project here as well. The topic should neither be too broad (attempting to cover too much) nor too narrow. Approval from the instructor is required before proceeding with any implementation. If a suitable topic for the capstone project has not been identified, the proposal will need to be revised and resubmitted at the earliest.

• 2nd Progress Report: Identify at least three, preferably five, technical conference/journal papers related to your project topic and submit annotations (brief paragraph summarizing each paper in your own words) for each. One or two of the references could be taken from a website, or could be in an alternative format (presentation, poster, multimedia, etc). Include how each identified source could be of use in developing your project. In addition, for any one of the articles create a bulleted list of the main points and sub-points. This list will be used for the discussing your research paper with the group and the paper you selected could be the one the group elects to present jointly to the entire class. Books and magazines may also be used as additional sources. This annotated bibliographic information will form a common base of knowledge for use by all students, and will be posted in Blackboard (unless you let me know otherwise). The references should be formatted using American Psychological Association (APA) guidelines, available online at http://nutsandbolts.washcoll.edu/apa.html. If online sources are used, the reference should also include a persistent link to the article when possible. Refer to the Academic Search Premier Database (http://www.library.eku.edu/new/index.php) which is available through the EKU libraries, for identifying articles related to the topic. Refer to an online video tutorial on using the EKU library databases for retrieving articles (the EKU libraries website may have changed slightly, but the procedure for searching articles is likely to be similar to this): http://www.people.eku.edu/chandrav/Ref/onlineArticlesEKU.wmv.

• 3rd Progress Report: Identify progress to date, problems encountered, approximate percentage of project completed, and any ongoing issues. If possible include tentative pricing of the equipment needed to complete the project outside of what is available in the laboratories.

Group research presentation:
• For the purpose of encouraging sharing of research information related to the broad area your project is in, once each project topic has been decided, groups (of 2-3 students) will be formed around similar themes.
• Different “Online Groups” will be created in Blackboard, where group members can post articles of interest using the “File Exchange” feature of Blackboard. Students can post the articles either to their specific groups or for viewing by the entire class.
• Individually each student will research and identify at least two papers related to their project topic, and then meet with the rest of the group to share the ideas from these papers. Online meetings of the group using the “Collaboration” features of Blackboard which include online Chat or Whiteboard can substitute for in-class meetings.

• A rubric for encouraging shared participation and responsibility regarding the group project will be provided. It must be filled out individually as a self-assessment tool, and submitted at the time of the group presentation along with your reflections on how participation could be improved further.

• Together each group will then select one of the papers from all those individually researched for a group presentation.

• The group presentation can be done either using PowerPoint/alternate software. Alternatively, a poster presentation format may be used. Groups may also choose to build or demonstrate a derivative work based on the paper being presented. Post the presentation, related articles and any digital images or videos of your presentation to the Blackboard group site for the entire class.

• Maintain a record of the technical topics discussed during the group meetings.

• Submit a memorandum summarizing activities of the group in setting up the presentation.

Final project demonstration and presentation:

• A presentation of your individual project is required. In addition to the instructor for the course, other Computer Electronics Faculty members (Prof. Jeff Kilgore, Dr. Ray Richardson, and Prof. Dale Patrick), as well as, CEN advisory committee members may be present during the final project demonstration and presentations.

• The presentation should be organized into a format which is easy for others to understand. A PowerPoint template will be provided. The presentations allow you to discuss the research project you have developed during the semester. One of its main purposes is to teach others in the class about topics you have been researching and building.

• Plan for a 15 minute or so presentation with a couple of minutes for initial setup time and also for audience questions. Prepare responses for a list of 3-5 possible audience questions.

• A template will be provided for the final presentation and must be used. Any exceptions to this are to be approved by the instructor. Create a 1 page handout summarizing your work for the class.

• Professional attire is recommended on the day of the presentation. Group photos of the 2010 spring/summer and fall graduating class will be taken. If academic regalia are available please bring it along for use while taking the group photographs.

• Discuss your presentation or its outline with me prior to the final presentation.

Final project report:

• An individually written detailed report, approximately 10-15 pages in length (excluding title and appendices), with appropriate bibliographical references, in American Psychological Association (APA) format http://nutsandbolts.washcoll.edu/apa.html, is required.

• In general your project should have the following organization:
 ▪ Title page – project title, name, course, date, department, and institution
 ▪ Table of contents – include page numbers for various sections of the report
• An executive summary or abstract – Summarize in a paragraph or so, the technical problem and your proposed solution. Include a heading ‘Keywords’ and list 3-5 keywords related to your project.

• Introduction – Indicate the general technical area the problem being solved is set in. Discuss your motivation for undertaking the project. Refer to any relevant background information obtained from your list of references over here. Include applications from industry where similar ideas are being used or which prompted your design; also list alternate designs you considered initially, emphasizing the design which was finally chosen. Use illustrations liberally. If possible illustrate with a sample example, which indicates the necessity of addressing a specific technical problem. Use APA citation for references used indicating the ideas which influenced your project. Provide proper citations for any figures taken from other sources, including those taken from the Web.

• Problem Statement section - Specifics of the technical problem your project is trying to solve. Include assumptions, and the conditions under which your design is supposed to function (in-scope specifications).

• Design section – include your suggested final design with detailed illustrations, circuit diagrams, and the principle of operation of the system. It should also contain a block diagram of your system showing how the different parts of the system are linked together. The design section may contain subsections for the major blocks or tasks that need to be completed. This is the main part of the paper and be as detailed as possible without including any trivial information. If special testing procedures or equipment is needed make a note of it here as well. Include a project schedule, listing the major blocks (tasks) and sub-tasks that had to be completed, designating key tasks as project milestones, along with a schedule of how long each task took to complete. You may compare the anticipated and actual time needed for reaching each project milestone.

• Implementation section – indicate whether the completed project meets and/or exceeds the in-scope specifications the project. Include a subsection for operational testing, with the procedures used to determine whether it conforms to the specifications. Also, include information about any technical problems which arose during the course of the project, as well as how you solved them. Offer possible explanations for any portion of the project which did not work as planned. Identify whether the crucial sections of the design are functioning as specified, and which sections required troubleshooting. Indicate which part of the design was the hardest and which how closely did your actual implementation follow the schedule. If needed include a subsection on simulation and calculated results, along with any graphs or tables showing the trends observed. Include simulation and/or calculated results, along with any graphs or tables showing the trends observed. Include digital photograph(s) of the project and refer to it within this section.

• Conclusions – Summarize the status of the project. State whether the completed project meets the in-scope specifications and project objectives. Provide suitable explanation for any sections which are not fully functional. Compare the working project to similar commercially available systems. Are there any key findings or implications which can be useful in extending its functionality further. Reiterate how your project solves the stated problem noting its significance.

• References – A bibliography section listing at least 5 - 10 references in APA format.
• Appendices – Include any manufacturer datasheets, detailed program code, ‘HOWTO’ (a step-by-step procedure), oscilloscope plots, program code, list of the materials and equipment used as applicable. Label the appendices A, B, etc.
• Spell-check your report. Possibly have a friend or family member read over your paper for typographical errors, and overall organization.
• A special note on using of text from web sources – please make every attempt to paraphrase the author rather than quoting verbatim. While it is tempting to cut-and-paste information from outside sources please refrain from doing so, except while using appropriate citations. Any images used in the document should include appropriate citations.
• If the project involves ideas which could be of benefit to a wider technical audience consider publishing your paper or participating in a national conference, such as ATMAE (Association of Technology, Management, and Applied Engineering) formerly NAIT (National Association of Industrial Technology). This will be helpful for students later seeking admission to graduate school. We will be glad to work with you on any such endeavor. Such local, regional and nation presentation puts our department in the spotlight.

Weekly Discussion Board (DB) entries (online):
• Since the class does not meet on every assigned class period it is important to designate specific days of the week which you will be able to set aside for working on the capstone project. Maintain detailed entries in the DB section of Blackboard, which will serve as your project log. Additional documents, and scanned diagrams of your designs may be attached along with the DB entries.
• Twelve (12) DB entries are planned at various points through the semester, and you are welcome to add more. Multiple entries during the week are encouraged. Refer to the course calendar for due dates. All entries should be posted by midnight Saturday of the week these are due. Reduced grades will be awarded to DB entries posted late.
• On occasion prompts will be posted in the discussion board requiring specific responses. Some journal entries will require your observations, summaries and comments about guest speakers and field trip(s) for the class.
• A typical DB entry should be at least a paragraph (3-6 sentences). It may include specifics about the progress on the project such as reporting ongoing issues, commenting on any interesting online sources you found relevant to your project, documenting any insights or ideas you had, listing any contacts established, parts acquired, designs tested, how you feel about progress on the project, and in general any work being made toward the project that week. Use proper grammar.

Portfolio:
• Maintain a 3-ring binder containing written documentation regarding your project.
• Organize the binder into sections related to online information sheet and weekly capstone journal, progress reports, group work, field-trip reports, reference material such as technical papers reviewed, technical brochures, correspondence with product vendors, a copy of the final presentations, documents submitted for inclusion to the capstone web page, drafts/final version of project report, etc.
• Include a notes copy in the binder where you have recorded your ideas and jottings related to the project, with dates. Entries can be penciled in and arranged in chronological order.
• Your portfolio will also be evaluated for completeness when you submit the final project report.
Computer Electronics 2010 Capstone Webpage:
• The web page for the capstone course is located at:
• The following information will be requested towards the end of the semester for updating the capstone webpage:
 o Title of project
 o Abstract/Summary of project
 o PowerPoint of final presentation
 o Video(s) of project
 o Photo(s)
 o Permanent email
 o Resume in RTF and PDF

You may rework and resubmit your reports (except the final presentation/report), for limited partial credit. Work turned in late will have reduced credit.

Note: Resources of the computer electronics Laboratories (Basic Electricity, Microprocessors, PLCs, Advanced Networking) will be available for students while working on the capstone project during the EET399/499 designated class periods.

Also, faculty members of the computer electronic networking program have kindly agreed to serve as “consultants” to your capstone project. You may discuss your project, initial ideas and working strategies with them. Their contact information is given Technology faculty is given:

• Prof. Jeff Kilgore
 ☏: (859) 622-1204
 Email: jeff.kilgore@eku.edu
 Office: Whalin 402

• Dr. Ray Richardson
 ☏: (859) 622-1200
 Email: ray.richardson@eku.edu
 Office: 327

• Prof. Dale Patrick
 ☏: (859) 622-1198
 Email: dale.patrick@eku.edu
 Office: Whalin 200B

• Dr. Tim Ross
 ☏: (859) 622-3232
 Email: tim.ross@eku.edu
 Office: Whalin 302

• Dr. Steve Fardo
 ☏: (859) 622-1184
 Email: steve.fardo@eku.edu
 Office: Whalin 301B

Course Requirements:
Students are expected to:
1. Complete and submit all project progress reports and final report in a timely manner.
2. Complete the weekly online capstone journal entries
3. Participate in the group research paper presentation
4. Implement the capstone project and demonstrate it in class on the prescribed date.
5. Maintain a 3-ring binder or folder for organizing class materials.

Grades:

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-90%</td>
<td>A</td>
</tr>
<tr>
<td>89.9-80%</td>
<td>B</td>
</tr>
<tr>
<td>79.9-70%</td>
<td>C</td>
</tr>
<tr>
<td>69.9-60%</td>
<td>D</td>
</tr>
<tr>
<td>Below 60%</td>
<td>F</td>
</tr>
</tbody>
</table>

Mid-term grades will be made available to students by Friday, March 5, 2010.

Tuesday, May 11, 2010 – Final grades available online under EKUDirect/StudentRecords/Official Grade Report
BS degree seniors in the College of Business & Technology (CB&T), including CEN majors enrolled in EET 499 are required to register, for and attend the CB&T College to Careers (formerly Professional Skills Conference) events, Friday, March 26, 2010. This in an important graduation requirement and all CEN students are required to register for BTS credit once during their senior year: BTS 400-005, CRN# 25142. This event is also open to juniors in the BS degree signed up for the BTS 300-003, CRN# 25875, and counts as one of the approved events. Formal attired is required during the College to Careers event.

STUDENT PROGRESS:
Students will be informed of their progress in the course after the 1st assessment (approximately 6th week of the semester). All students are encouraged to meet with me for discussing their progress as well as to identify opportunities for improvement at any time during the semester.

Friday, March 19, 2010 – Last day to withdraw with a "W" from a full-semester class, or to withdraw from full-semester classes or withdraw from the university.

OFFICIAL E-MAIL:
An official EKU e-mail is established for each registered student, each faculty member, and each staff member. All university communications sent via e-mail will be sent to this EKU e-mail address.

ATTENDANCE POLICY:
There are only eight (possibly nine) in-class meetings planned including two days for the final presentations, and one for the mid-term group presentations. Please plan to attend all these sessions. After the second unexcused absence, each unexcused absence will cause five percent deduction from the overall percentage. Your grade will be an automatic F if you have four (4) or more unexcused absences. If you know in advance that you will be absent, including for university accepted excused events, please inform me at the earliest. Email (vigs.chandra@eku.edu.edu) usually is the fastest way of contacting me, or you may call (859) 622-1187.

Field-trip: A field-trip is planned during March (Tuesday after Spring break) to the Hummel Planetarium, located on the EKU, Richmond campus, KY, for examining the electronic control center and computer systems used. Attendance is required, and a write-up on the field trip in Blackboard Discussion Board is part of the grade for the class.

Cell Phones: Cellular phones should be off or on silent operation during class in order to keep classroom distractions at a minimum. Under special circumstances students are permitted to use the phone but should seek my approval prior to class.

DISABILITY STATEMENT:
If you are registered with the Office of Services for Individuals with Disabilities, please obtain your accommodation letters from the OSID and present them to the course instructor to discuss any academic accommodations you need. If you believe you need accommodation and are not registered with the OSID, please contact the Office in the Student Services Building Room 361 by email at disserv@eku.edu or by telephone at (859) 622-2933 V/TDD. Upon individual request, this syllabus can be made available in an alternative format.
ACADEMIC INTEGRITY STATEMENT:
Students are advised that EKU’s Academic Integrity policy will strictly be enforced in this course. The Academic Integrity policy is available at www.academicintegrity.eku.edu. Questions regarding the policy may be directed to the Office of Academic Integrity.

Exit Exam Information for 2010 Graduates
- BS and AAS computer electronics programs students graduating in spring or summer 2010 semesters should schedule their exit exams with me in the final two weeks of the semester. For students graduating in fall 2010, the exit exam is to be completed in December 2010.
- The open-book, open-notes, exit exam consists of an online assessment and a performance assessment.
- Each assessment in turn consists of three sections – Networking; Computer Systems; and Electricity and Electronics.
- The online assessment has 20 objective type questions in each area, and the performance (simulation/hands-on laboratory) assessment requires students to complete at least one task in each area.
- A separate Blackboard course will be made available with more information regarding the exit exams during the last few weeks of the semester.
- For students who need to schedule their graduation in 2010 please access the College of Business & Technology (CB&T) academic advising website: http://www.cbt.eku.edu/academicadvise/default.php

☺ The work you do in the capstone course, and the grade you earn, should reflect your personal abilities, and accomplishments. I encourage you to discuss your project with other students. However any work you submit must be your own.

☺ Any suggestions leading to improvements in the content or presentation of the course, especially in the laboratory work, are most welcome.

Course Calendar
EET399/499: Capstone Project in CET/CEN
- Most Thursday class (6-8 pm) class meetings are open-lab hours. You may use any of the laboratory facilities by getting prior approval from the faculty member supervising the laboratory.
- Final project demonstration and presentation to be held Tuesday, April 20 and Thursday, April 22.
- Final project report is due by 6 pm, Tuesday, May 6 (Finals week), along with portfolios.

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tu., Jan. 12</td>
<td>In-class meeting
Syllabus</td>
</tr>
<tr>
<td></td>
<td>Th., Jan. 14</td>
<td>Complete Blackboard entries by Saturday Jan. 16</td>
</tr>
<tr>
<td>2</td>
<td>Tu., Jan. 19</td>
<td>Complete Blackboard entries by Saturday Jan. 23</td>
</tr>
<tr>
<td></td>
<td>Th., Jan. 21</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tu., Jan. 26</td>
<td>Written progress report 1
Project proposal, select topic title and outline scope of the project</td>
</tr>
<tr>
<td></td>
<td>Th., Jan. 28</td>
<td>Complete Blackboard entries by Saturday Jan. 30</td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Due Dates</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 4 | Tu., Feb. 2| *In-class meeting*
Oral report – project title and outline
Organize similar projects into groups. Exchange group address information
Using online EKU library resources for researching technical information
Th., Feb 4
Complete Blackboard entries by Saturday Feb. 6 |
| 5 | Tu., Feb 9 | Group meetings (online/phone/lab). Maintain list of topics discussed.
Th., Feb 11
In-class meeting (please note Thursday meeting time)
Guest speakers: Ms. Jodi Hurley, Infrastructure Operations Manager, Office of Education Technology, KY, will discuss managing technology services, and deployment of a widely used approach called the Information Technology Infrastructure Library (ITIL), along with virtualization. Discussion on project scheduling software, and online research. Group meeting. Maintain list of topics discussed.
Complete Blackboard entries by Saturday Jan. 13 |
| 6 | Tu., Feb 16| *Written progress report 2* – Summary of at least three technical conference/journal papers (5 preferred), related to your project topic
Group meeting (online/phone/lab). Maintain list of topics discussed.
Th., Feb 18
Complete Blackboard entries by Saturday Jan. 20 |
| 7 | Tu., Feb 23| Group meeting (online/phone/lab). Maintain list of topics discussed.
Th., Feb 25
Complete Blackboard entries by Saturday Jan. 27 |
| 8 | Tu., Mar 2 | *In-class meeting*
Group presentation and optionally a demonstration of mutually agreed upon research topic. Submit summary of group meeting notes.
Th., Mar 4
Complete Blackboard entries by Saturday Mar. 6 |
| 9 | M, Mar. 8 – F, Mar. 12 | *Holiday – Spring Break* |
| 10 | Tu., Mar. 16| *In-class meeting at Hummel Planetarium (5 pm please note time change)*
Field-trip – Hummel Planetarium – Electronic Control Center and starlight equipment demonstration, by Mr. James Hughes
Th., Mar 18
In-class meeting (Tentative)
Guest speaker: Mr. Steven Fulkerson, Director, Telecom and Network, Information Technology at EKU
Complete Blackboard entries by Saturday Mar. 20 |
| 11 | Tu., Mar. 23|
Th., Mar. 25
Complete Blackboard entries by Saturday Mar. 27 |
| 12 | Tu., Mar. 30| *Written progress report 3* – Identify progress to date, problems encountered and resolved, approximate percentage of project completed
Th., Apr. 1
Complete Blackboard entries by Saturday Apr. 3 |
| 13 | Tu., Apr. 6|
Th., Apr. 8
Complete online journal entry by Saturday Apr. 10 |
| 14 | Tu., Apr. 13| *In-class meeting*
Information regarding final presentations, including the ones being considered for the college of prestigious (CB&T) presentations
Deciding order of final project presentations
Discussion regarding preparation of the final project report
Materials for updating capstone web page
Information regarding departmental exit exam (online and lab portions)
Th., Apr. 15 |
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Due Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Tu., Apr. 20</td>
<td>In-class meeting 1<sup>st</sup> set of presentations. PowerPoint and video of project.</td>
</tr>
<tr>
<td></td>
<td>Th., Apr. 22</td>
<td>In-class meeting 2<sup>nd</sup> set of presentations. PowerPoint and video of project.</td>
</tr>
<tr>
<td>16</td>
<td>Tu., Apr. 27</td>
<td>(optional) Draft of final project report</td>
</tr>
<tr>
<td></td>
<td>Th., Apr. 29</td>
<td>(Tentative 6 pm) – CB&T Capstone presentations (Optional) Complete Blackboard entries by Saturday May 1</td>
</tr>
</tbody>
</table>
| 17 | M, May 3 – F, May 7 | **Finals Week**
No Final
Tuesday, May 6: Final project reports due by 6 pm, along with portfolios
Saturday, May 8: 😊 2009-10 Spring Graduation Ceremony 😊
EKU Alumni Coliseum (EKU Basketball venue), 9:30 am – 11:30 am
http://www.registrar.eku.edu/GraduationInformation/ |